Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

trans-Dichloro(meso-2,3,7,11,12-pentamethyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15-triene- $\kappa^{4} N^{3,7,11,17}$)rhodium(III) hexafluorophosphate

Alexander J. Blake, ${ }^{\text {a }}$. Timothy I. Hyde $^{\text {b }}$ and Martin Schröder ${ }^{\text {a }}$
${ }^{\text {a }}$ School of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England, and ${ }^{\mathbf{b}}$ Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

Correspondence e-mail:
a.j.blake@nottingham.ac.uk

Key indicators

Single-crystal X-ray study

$T=293 \mathrm{~K}$

Mean $\sigma(\mathrm{C}-\mathrm{C})=0.016 \AA$
Disorder in solvent or counterion
R factor $=0.065$
ωR factor $=0.182$
Data-to-parameter ratio $=9.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound, $\left[\mathrm{RhCl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{4}\right)\right] \mathrm{PF}_{6}$, the $\mathrm{Rh}^{\text {III }}$ ion lies at the centre of a distorted octahedron of two axial chloride and four equatorial aza ligands. Within estimated error, the complex cation possesses non-crystallographic mirror symmetry. The $\mathrm{Rh}-\mathrm{Cl}$ distances of 2.345 (3) and 2.349 (3) \AA are equivalent, as are the three $\mathrm{Rh}-\mathrm{N} s p^{3}$ distances [mean 2.145 (7) \AA]. The $\mathrm{Rh}-\mathrm{N} s p^{2}$ distance is much shorter at 1.964 (7) Å, reflecting the different hybridization of this donor atom. The four N atoms are not coplanar, and the metal ion lies out of the N_{4} plane by 0.013 (3) \AA, suggesting that, with an ionic radius of $0.805 \AA$, the $\mathrm{Rh}^{\mathrm{III}}$ ion is somewhat large for the macrocyclic cavity.

Comment

The distortions from ideal octahedral coordination of the metal centre in the title complex, (1), are seen in the cis and trans angles subtended at that centre, which range from 82.3 (3) to 97.9 (3) ${ }^{\circ}$ and from 164.5 (3) to 175.9 (3) ${ }^{\circ}$, respectively. The bonds to Rh formed by the two chloride ligands are equivalent, as are the three bonds from the $s p^{3}$ nitrogen donors N3, N7 and N11. The Rh-N17 distance is much shorter, reflecting the $s p^{2}$ hybridization of this donor atom.

(1)

(2)

The four N atoms are not coplanar [mean r.m.s. deviation from the N_{4} best plane is 0.065 (8) \AA] and this effect is represented in the 29° twists of N 3 and N 11 from the plane of the pyridyl

Received 24 August 2001 Accepted 6 September 2001 Online 20 September 2001
© 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Figure 1
A view of the cation of (1) with the atom-numbering scheme. Displacement ellipsoids enclose 30% probability surfaces. A noncrystallographic mirror plane bisects the cation, passing through atoms C15, N17, Rh, Cl1, Cl2, N7 and C7N.
ring. The metal ion lies 0.013 (3) \AA out of the N_{4} plane, in the direction of Cl 2 . These observations suggest that, with an ionic radius of $0.805 \AA$ (Shannon, 1976), the $\mathrm{Rh}^{\mathrm{III}}$ ion is somewhat large for the macrocyclic cavity and the observed distortions are a mechanism to accommodate this misfit. A non-crystallographic mirror plane bisects the cation, passing through C15, $\mathrm{N} 17, \mathrm{Rh}, \mathrm{Cl} 1, \mathrm{Cl} 2, \mathrm{~N} 7$ and C7N (Fig. 1).

Complexes of second-row transition metals with the $2,3,-$ 7,11,12-pentamethyl-3,7,11,17-tetraazabicyclo[11.3.1]hepta-deca-1(17),13,15-triene ligand are rare, the only structurally characterized example of which we are aware being the transisocyanatooxoruthenium(IV) complex, (2) (Che et al., 1989). However, a number of complexes of first-row elements are known, for example with cobalt(II) (Che et al., 1986) and nickel(II) (Che et al., 1988) and there are a large number of complexes with ligands having different functionalization of the $3,7,11,17$-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15triene backbone, for example, carbonylchloro[cis-2,7,12-tri-methyl-3,7,11,17-tetraazabicyclo[11.3.1]heptadeca-1(17),13,15 -triene- $\kappa^{4} N^{3,7,11,17}$]ruthenium(II) tetraphenylborate (Blake et al., 1986).

Experimental

Reaction of RhCl_{3} with meso-2,3,7,11,12-pentamethyl-3,7,11,17-tetra-azabicyclo[11.3.1]heptadeca-1(17),13,15-triene in MeOH was followed by addition of $\mathrm{PF}_{6}{ }^{-}$. Crystals of (1) were grown from
$\mathrm{CH}_{3} \mathrm{NO}_{2}$ solution. Elemental analysis, found: C 35.9, H 5.17, N 8.5%; calculated for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{PRh}$: C 34.6, H 5.17, N 9.0\%.

Crystal data
$\left[\mathrm{RhCl}_{2}\left(\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{4}\right)\right] \mathrm{PF}_{6} \quad Z=2$
$M_{r}=623.26$
Triclinic, $P \overline{1}$
$a=7.949$ (5) \AA 。
$b=11.067$ (5) \AA
$c=14.116$ (5) \AA
$\alpha=74.22(5)^{\circ}$
$\beta=86.26(5)^{\circ}$
$\gamma=84.67(5)^{\circ}$
$V=1188.7(10) \AA^{3}$
$1.741 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 19
reflections
$\theta=12-13^{\circ}$
$\mu=1.07 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Lath, yellow
$0.5 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scans; refined from ΔF (North et al., 1968; Walker \& Stuart, 1983)
$T_{\text {min }}=0.448, T_{\text {max }}=0.898$
3098 measured reflections
3098 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.182$
$S=1.00$
3094 reflections
325 parameters

Table 1

Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Rh}-\mathrm{Cl} 1$	$2.345(3)$	$\mathrm{Rh}-\mathrm{N} 7$	$2.140(7)$
$\mathrm{Rh}-\mathrm{Cl} 2$	$2.349(3)$	$\mathrm{Rh}-\mathrm{N} 11$	$2.150(7)$
$\mathrm{Rh}-\mathrm{N} 3$	$2.145(7)$	$\mathrm{Rh}-\mathrm{N} 17$	$1.964(7)$
$\mathrm{Cl} 1-\mathrm{Rh}-\mathrm{Cl} 2$	$175.61(8)$	$\mathrm{Cl} 2-\mathrm{Rh}-\mathrm{N} 17$	$88.7(2)$
$\mathrm{Cl} 1-\mathrm{Rh}-\mathrm{N} 3$	$91.1(2)$	$\mathrm{N} 3-\mathrm{Rh}-\mathrm{N} 7$	$97.9(3)$
$\mathrm{Cl} 1-\mathrm{Rh}-\mathrm{N} 7$	$88.9(2)$	$\mathrm{N} 3-\mathrm{Rh}-\mathrm{N} 11$	$164.5(3)$
$\mathrm{Cl} 1-\mathrm{Rh}-\mathrm{N} 11$	$91.3(2)$	$\mathrm{N} 3-\mathrm{Rh}-\mathrm{N} 17$	$82.5(3)$
$\mathrm{Cl} 1-\mathrm{Rh}-\mathrm{N} 17$	$86.9(2)$	$\mathrm{N} 7-\mathrm{Rh}-\mathrm{N} 11$	$97.5(3)$
$\mathrm{Cl} 2-\mathrm{Rh}-\mathrm{N} 3$	$88.3(2)$	$\mathrm{N} 7-\mathrm{Rh}-\mathrm{N} 17$	$175.9(3)$
$\mathrm{Cl} 2-\mathrm{Rh}-\mathrm{N} 7$	$95.4(2)$	$\mathrm{N} 11-\mathrm{Rh}-\mathrm{N} 17$	$82.3(3)$
$\mathrm{Cl} 2-\mathrm{Rh}-\mathrm{N} 11$	$88.2(2)$		

The primary absorption correction was semi-empirical (North et al., 1968), supplemented by calculated corrections (Walker \& Stuart, 1983). The largest residuals in the final ΔF synthesis lie near the metal atom. There is disorder in the equatorial F atoms of the anion, which was modelled by allowing two orientations for each of these four atoms, F2-F5. Extensive restraints were applied to $\mathrm{P}-\mathrm{F}$ distances, $\mathrm{F}-\mathrm{P}-\mathrm{F}$ angles and anisotropic displacement parameters. The occupancies of these orientations refined to 0.50 (3), indicating that they are equally occupied, and so all were set equal to 0.5 . H atoms were placed geometrically and refined riding on their parent C atoms at distances of $0.93,0.96,0.97$ and $0.98 \AA$ for aromatic, methine, methylene and methyl groups, respectively, with $U_{\text {iso }}(\mathrm{H})=$ $x U_{\text {eq }}(\mathrm{C})$, where $x=1.5$ for methyl H atoms and 1.2 for all others.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CADABS (Gould \& Smith, 1986); program(s) used to solve structure: SHELX76 (Sheldrick, 1976); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick,

metal-organic papers

1994); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2001).

We thank EPSRC for support.

References

Blake, A. J., Hyde, T. I., Smith, R. S. E. \& Schröder, M. (1986). J. Chem. Soc. Chem. Commun. pp. 334-336.
Che, C.-M., Mak, S.-T. \& Mak, T. C. W. (1986). Inorg. Chem. 25, 4705-4708.
Che, C.-M., Mak, S.-T., Lee, W.-O., Fung, K.-W. \& Mak, T. C. W. (1988). J. Chem. Soc. Dalton Trans. pp 2153-2159.

Che, C.-M., Tang, W.-T., Lee, W.-O., Wong, W.-T. \& Lai, T.-F. (1989). J. Chem Soc. Dalton Trans. pp. 2011-2016.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gould, R. O. \& Smith, D. E. (1986). CADABS. The University of Edinburgh, Scotland.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1976). SHELX76. University of Cambridge, England.
Sheldrick, G. M. (1994). SHELXTL/PC. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2001). PLATON. University of Utrecht, The Netherlands. Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

